Beschreibung |
Course content: • State space models and sensor models • Least Square Estimation • Probability theory basics • General Bayesian Filters • Kalman Filter and variants • Non-parametric filters (particle filters) • Introduction to Data Association
Learning objectives: Subject-specific competencies: Students… • Know the hierarchical structure of data fusion systems • are able to derive the Bayesian filter equation • can implement various types of Kalman filters • can implement particle filters • are able to evaluate the performance of stochastic filters
Methodological competencies: • have gained an understanding of modern methods for information fusion • know the sub modules for data association, track instantiation and termination
Interdisciplinary competencies: • are aware of the cross connection between data acquisition and suitable fusion methods • can apply data fusion methodology to interdisciplinary topics in robotics and automotive
Literature and other sources of information: • Liggins, M., Hall, D. Llinas, J.: Handbook of Multisensor Data Fusion – Theory and Practice, 2nd. Ed. 2008, CRC Press, ISBN 978-1-4200-5308-1 • Koch, W.: Tracking and Sensor Data Fusion - Methodological Framework and Selected Applications, Springer 2014 ISBN 978-3-642-39271-9 • Gelb, A. Applied Optimal Estimation, The MIT Press 2001 ISBN 0-262-20027-9 • Anderson, B. Moore, J.: Optimal Filtering, Prentice Hall 1979 ISBN 0-13-638122-7 • Thrun, S., Burgard, W., Fox, D.:Probabilitic Robotics (Intelligent Robotics and Autonomous Agents), The MIT Press 2005, ISBN 978-3-642-39271-9 |